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P. Michael Farmwald, William Bryson and John L. M anferdelli

University of California, Lawrence Liverrnore National Laboratory
Livermore, CA 94550

Abstract

The S- I family of uni- and multiprocessors is &n extremely high performance but relatively inexpen-
sive generzJ purpose set of digital proceauing systems being developed for the most demanding National
security applications. A typical S-1 system consists of from one to sixteen S-1 uniprocessors sharing up to
4 gigawords of uniformly addres~ed main memory. Each uniprocessor of the current (Mark IIA) generation
has computational power roughly equivalent to that of a CR AY- 1. In this paper, we give a general descrip-
tion of the S-1 Mark IIA uniprocessor and a somewhat more extensive discussion of its signal processing

●

hardware and hardware-executed algorithms. Our focus is a discussion of the felicitous properties of the
uniprocessor components that make the S-1 system a powerful general purpose digital signal processor.

,
.

S-1 Sv-tem Architecture

. .

. .

A basic goal of the S-1 Mark IIA design has been to produce a flexible supercomputer with special signal
proce~sing capabilities. The strategy employed in realisiog this goal has been to design a high performance
uniprocessor to be used as either as a stand-alone CPU or as a member of a closely coupled network con-
sisting of multiple processors interconnected into a memory of enormous [by previous standards) capacity.
Unlike many current signal processors, an S-1 un.iprocessor incorporates its general purpose functions in
the same unit that houses the special purpose high speed arithmetic/signal processing functions; this al-
lows uniform access to signal processing functions without the performance degradation associated with
ancill=y processors (e. g., that due to slow bus speeds and transmission of data from general purpose main
memory to special purpose ‘boxes=).

Space limitations (and the reader’s patience) do not permit a complete description of the designs of
S-1 Uniprocessor and multiprocessor systems here; instead, the interested reader may repair to [1] for a
good overview, or to [2] for a complete description of the S-1 system design.

S-1 Instruction Set

The baaic S-1 instruction set architecture was designed for high performance implementation, yet is
oriented towards high-level language usage. It includes a vector and signal processing instruction subset, as
well as a few special purpose instructions (e.g. ones for sorting). This combination of powerful elementary
machine capabilities has several implications. It simplifies the efficient use of the the signal processing
constructs from a high level hqguage, since the complexity of generating code for two dissimilar mac~nes
running with two (or more) sepzuate address spaces and differing instruction and data formats is avoided.
In addition, the tight coupling between scahr and vector processing implies a greatly reduced “hardware
domin=ce” effect on the choice of algorithms. An algorithm can be coded in a more natural or intuitive
fashion, rather than having to be recast to fit the peculiarities of the architecture or implementation. As
an example, the use of branches depending upon the values of just-computed data must be reduced to
a minimum when using a signal processor, nince it involves interaction between the host and the signal

-processor.
..
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The large (two gigabyte) virtual address space of the S-1 architecture greatly simplifies its program-
ming. Large data bases can thereby be conveniently maintained, and many applications can productively
trade OH memory capacity against real-time constraints. The cost of memory is dropping rapidly; we
envision having main memory systems of up to 100 megabytes capacity by the end of 1981 (at a cost of no
more than $5000 per megabyte).

Data Types

The S-1 architecture data formats include 9, 18, 36, and 72 bit
and 72 bit floating-point numbers. These basic data types can be
including complex numbers (pairs), vectors and arrays.

The three floating-point formats are half word (one sign bit,
bit~), .singleword [one sign bit, nine exponent bits and 27 fraction

signed and unsigned integers and 18, 36
organised into more complicated types

five exponent bits and twelve fraction
bits), and doubleword (one sign bit, 15

expo”nent–bits and-56 fraction bits). The S-1 floating-point data f or mat ~so includes a “hidden” normalised
bit. Since all S-1 floating-point numbers are normalised, it is redundant to include the most significant bit
of the fraction. Thus the actual useful fractions are one bit larger than indicated.

In addition, the floating-point instructions treat certain values speciaIly; this allows the maintainance
of as much information as possible in the presence of overflow, underflow and division by sero. (The S-1
data formats are described in [2]; see [3] for a detailed description of a similar floating-point format.)

The 18-bit Boating-point format is a rather novel data type for a general purpose computer; however, it
promises to be the most useful data type for signal processing. In particular, it simplifies the computation
of FFTs, since scaling is done automatically, and it also makes the calculation of low-precision FFTs more
accurate [4] than can be obtained with an integer format of the same total data word size.

S-1 Mark IIA Uniprocessor Implementation

The time-consuming portions of merit signal processing algorithms are simple parallel computations;
however, as new machines become ever more parallel, the inherently serial or less structured computations
wilI dominate execution time. The ability of a high performance signal processing architecture to do fast
scalar processing will thus become as important as its ability to rapidly perform FFTs or vector multiplies.
In addition, the plot of instruction rate YS. operation sise must not have too large of a gap (Figure
1) between scalar (characterised by small sise and little or no structure) and vector (characterised by
arbitrary sise and highly structured) operations; such a large gap in processing capability would make
parallel but non-structured algorithms suffer greatly in performance, as has actually been seen in some
recent superprocesaor implementations.

The S-1 Mark IIA has attempted to address this evolving situation by having a balance of high
performance scalar and vector processing capabilities. The Mark II-A uses the same hardware to execute
both kinds of instruction, which leads rather naturally to a smooth trade-off between the instruction rate
and the operation sise.

The scaler instruction cycle time of the Mark HA is 50 ns; the Mark IIA can therefore execute up to 20
million instructions per second. An S-1 scalar instruction can be quite powerful in that a single instruction
may include indexing (including shifting of the indices), multiple memory or register reads (including the
virtual-to-physical address tramlation) and finally execution of the operation itself, all pipelined at the rate
of 50 ns per instruction. This is particularly important due to the high-level language orientation of most
current systems development: many high level language constructs compile into single S-1 instructions. Of
course, more complicated instructions don’t pipeline at the maximum rate; some examples of these are
subroutine calls or most types of divide instructions.

The operation of a pipeline is not always “smooth””
(in time) instructions which cause interlocks.

, occasionally there are dependencies between nearby
The scalar latencies of the various instruction interlocks

axe complicated, due to the complex nature of the Mark IIA pipe. However, for most signal processing
applications, the most interesting time is the latency of the ‘execution” of operations (i.e. the time from
starting an addition operation to when the sum is available for use in the next operation). For most
scalar operations of the Mark HA, this quantity is readily determined. If the instruction is some form
of multiplication (all precision of multiplication and single precision reciprocation or square root), the
latency is 150 ns. For most other “add class” operations, the execution latency is 100 ns. These “add
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Figure 1. Graph of Operation ratevs. operation sise.

class” operations include floating-point and integer addition and subtraction of all precision, shifts, byte
loads and deposits, minimum, maximum, absolute value, bit counting and “find first one bit”. Other
scalar operations take Ionger depending upon their complexity. Again it should be emphasised that these
instructions all pipeline at 50 ns, the latency period is seen by the user only when there are nearby
instruction dependencies.

A happy consequence of having such short scalar latencies is the ease with which they often can be
eliminated by a small amount of code movement; thus there if there is at least one instruction between
the “add class” instruction and the instruction which uses the ‘add class” result, the latency of the “add
ciass” instruction is invisible and it will pipeline at 50 ns. Similarly, there need be only two instructions
between the initiation of a multiplication and its use for the multiplication latency to be irmisible.

The vector throughput of the Mark IIA can be as much 20 times greater than the peak scalar level
(the vector halfword complex fioating-point FFT does a complete butterfly every 25 ns, whereas the best
scalar program could perform the same butterfly in 500 ns, i.e. a 1024point complex FFT takes 0.13 ms,
compared to 2.6 ms for a scalar equivalent); a better rule of thumb is that vector equivalents are four times
faster than well-coded scalar loops. To give an better idea of the speeds involved, the loop

for I := 1 to SIZE do AII] := 13[1] + AII]*D;

ix implemented by a single instruction and will require [12.5 SIZE + 250 ns to cmplete for halfwords
I(lS-bits), [25 SIZE+ 250] ns for singlewords (36-bits), and [50 SIZJl + 250 ns for doublewords (72-bits).

The vector and special instructions are decoded using the same hardware as is used for scalar instruc-
tions; thus the rate of vector instructions is determined by the sise of the operation plus a small additional
overhead (0-300 ns, depending upon the instruction). The small sise of the overhead is important; it implies
that the performance is not degraded significantly when processing short vectors. In fact, for many vector
operations, the execution time for a vector of length two is the same as for the equivalent scalar code.

Table 1 lists some representative instructions and their execution times; tables 2 aad 3 lists some vector
and signal processing times.
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Inatruction (H-hsdfword, S-oinglcword, D-doubleword) Pipeline Time Latency

Move (HSD)
Shift (HsD)

Load Byte (SD)
Floating-point Add (HSD)

Floating-point Multiply (HsD)
Floating-point Reciprocate (HS)
Floating-point Square Root (HS)
Floating-point Reciprocate (D)

Floating-point Sine (HS)

Table 1. Selected Mark IIA

50 nm
50 n8
50 ns
50 ns
60 ns
50 ns
50 ns

S50 na
S00 ns

Instruction {H-halfword, S-sinzleword. D-doubleword)

Scalar Instructions.

?

for I := lto SIZE doX I

\\ 1

:= D (H
for I:=lto SXZEdo XI :=D (S
for I := 1 to SIZE do X[l] := D (D)

for 1 := 1 to SIZE do X[l

:::::i::::::::::d:#::Ei
for I := 1 to SIZE do X[l] := Y [1] + Z[l]*S (S)
for I := 1 to SIZE do X[l] := Y[l] + Z[l]*S (D)

Startup Time

250 ns
250 ns
250 ns
250 ns
250 ns
250 ng
250 n~

250 na
250 ns

100 ns
100 ns
100 na
100 ns
150 n:
150 ns
150 ns
450 ng
400 ns

Time Der Iteration

6.25 ns
12.5 ns

25 ns

12.5 ns
25 ns
50 ns

18.75 ns
37.5 ns
75 ns

Table 2. Selected Mark HA Vector Instructions.

.

Instruction (H-balfword, S-singleword) Time per Iteration

1024 Point Complex Floating-point FFT (H

1

1.3 ms
1024 Point Complex Floating-point FFT (S 5.2 ms

Table S. Selected Mark HA Signal Processing Inctruction~.

Hardware Description of the Mark 11A

Each S-1 uniprocessor contains a multiple stage “pipe” of instructions-in-process, segmented into 50
ns pipe intervals; that is, each uniprocessor operates at a peak fate of 20 million instructions per second
(MIPS) for scalar operations. As Figure 2 indicates, there =e two principal moduies of an S-1 Mark IIA
which implement this pipeline: the IBOX and the ABOX. The function of the IBOX is to prepare and deliver
operands and instructions to the ABOX, whose function, in turn, is to perform the requested operation
and return the results thereof to the IBOX.

The S-1 Mark IL4 IBOX

The IBOX itBelf consists of four microengines: the F-sequencer, which fetches instructions, the P-
sequencer, which decodes instructions, the I-sequencer, which fetches data and prepzues opermds, and
the M-sequencer which serves as a memory interface and control unit. The F-, P-, -d I-sequencers each
control different portions of the pipeline; the M-sequencer ser~ices memory (cache miss) requests from the
F- and I-sequencers.

We will not del~e deeply in the operation of the IBOX; however, two aspects of its desigo are relevant
to a discussion of signal processing on the Mark IIA. The first is the pzwallel nature of the data cache
in the IBOX; in particular, it can read out eight sequential halfwoxds of data every 50 ns cycle. This
performance level is necessary to achieve the needed vector bandwidth. To allow the arbitrary alignment
of opersmds (Ecalars and vectors) there is an alignment network; this is combined with a small buffer
memory to implement a “operand queue” to both align and buffer the deliver of data from the IBOX to the
ABOX. This operand queue has a special function for signal processing. We have developed an algorithm
for parallel %it reversal” of vectors using this memory [5] which aIlows the %it reversal” operation to
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Figure 2. S-1 Mark IIA Uniprocemor Functional Diagram.

proceed at the same rate as a ~ector move.

The S-1 Mark IIA ABOX

We will limit our discussion of the ABOX to its arithmetic capabilities; however, a few explanations
are in order. The ABOX internally works with a uniform bus format (the “internal” format); thu~ we
occasionally refer to the S-1 architecture format as the external format. The main relevence of this to
signal processing is in the increased accuracy with which many functions can be computed. This extra
accuracy is necessary for the “good to the last bit” evaluation of many of the ABOX special functions
(= example would be the SINE instruction). In addition, the evaluation of “composed” functions (i.e. a
function formed by the composition of more than one bariic operation) c- be evaluated with less rounding
error; this is important irt the execution of a FF T or a dot product. Note that all cycle time references in
the ABOX description are to 25 ns cycles, since the ABOX runs at twice the rate of the IBOX.

The arithmetic hardware of the ABOX consists of a Multiplier Functional Unit and an Adder Functional
Unit. The term “functional unit” refers to its independent nature, i.e. the adder and multiplier =e capable
of simultsmeous operation, The multiplier has six pipeline stages (for a total latency of 150 ns) and the
adder has four (for a latency of 100 ns); both can produce a result every (25 ns) cycle.

Multiplier Functional Unit The multipler functional unit includes four independent 18x36 bit multiplier
=rays and two half-word integer or floating-point adders, all of which are capable of simultaneous oper-

e. tion.

These are interconnected in various ways for executing different instructions. Some examples of such

‘,● variability are two cycles of all 4 arrays to do a double-word integer or floating-point multiplication, one
cycle of two arrays for a single-word integer or floating-point multiplication and one cycle of all four rmrays
plus two half-word adders to do a mmplex half-word multiplication.

Division is accomplished within the multiplier by one of two methods, both involving reciprocation.
TO compute single-word y/z, we first calc~ate l/~ by a piecewhe quadratic approximation initiated ~th
a table-lookup due [6]. With the tables included in the Mark XIA, this method produces about 30 bits

.
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of precision for I/z. WC may then rapidly calculate a slightly imprecimc value of ylz by multiplication;
a precise resu]t reqi.uzes an additional multiplication, in order that corxect rounding may be guaranteed.
For double-word division, we compute the reciprocal as before to 3CIbits and then UBC a Einglc Newton
ihmation to double the preci Eion. AS before, an additional multiplication is nece Esary for precise division.
(For integer double-word division, in which 72-bits are invol~ed, wc must iterate twice).

The piecewi~e quadraLi: approximation technique employed to calculate for reciprocal also work well
for many other functions 16]. The S- I Mark HA ABOX implements Kinc, cosine, arctangent, exponential
(2’, c’, and yz), logarithm (jg(x), h(x), and log(x)), and erf (error function) using thin method; thus, tbe
calculation of these functions can be pipelined aL 50 ns per result,

Adder Functional Unit The adder functional Uit is capable of doing Boating-point or integer adds of
d! precision, shifts, byte operations, boolean, bit counting, etc. It congists of four pipe stages and cam
produce a Dew result every cycle. The floating-point addition algorithm it employs is fairly novel [7], but
discussion of it iE deferred to the reference for reasons of brevity and its secondary relevance to signal
processing per se.

S-1 Multiprocessor

There are many signal processing tasks which are too compute-intensive to be effectively serwiced by
current computing systems. (Examples include real-time speech processing, radar and sonar imaging and
discrimination.) The S-1 multiprocessor is an attempt to make some of these tasks m ore feasible in the near
term. By combining extremely high-performance uniprocessors (the Mark IIA and future S-1 generations)
into a medium population multiprocessor (e.g. 16 processors), mq.ny compute-intensive algorithms can be
run frcmr 10 to iGG tiiirc~fatier than on the best currently available systems.

The most straightforward use of a multiprocessor system is to dedicate its separate processors to
performance of different tasks ( “task-pip eliding”). An obvious example of such a division would be data
coXiection, preprocessing, anai-ysis, and postprocessing in a typical real time signal processing enviornm ent.
When this level of ta~k partitioning fails to achieve the desired performance speed-up, one may use multiple
processors in confederation to perform single tasks.

For instrance, one could just go buy a hundred low-cost signal processors, attach them to a host
computer and claim a 100-fold increase in performance over a ~ingie system. Unfortunately, it has been
found. [more than once) that the “little” things become important when striving for very high degrees of
parallelism. The inherently serial parts of tine algorithm of interest will dominate as the parallel loops zue
made to run ever faster, and when new algorithms which reduce the serial sections are implemented, it is
usually found that the interprocessor communication begins to dominate execution time. This is becauEe
even though the cost of one signal processor talking to one host is (relatively) insignificant, the cost of 100
doing so typically is not.

The S-1 architecture amd the Mark IIA implementation have been designed with multiprocessing in
mind. The logical structure of the S-1 multi-processor is aepicted in .Fi-gure 3. The member processors share
a large (16 billion words) common physical address space with all accesries to the shared memory being
mediated by the Crossbar Switch. The use of cachef is lmporiant in reducing contention for mem ory access
by two or more processors. With a 99% “bitrate, ” the Switch data trafiic of a multiprocessor is reduced by
a factor of 100. This extremely high bit rate is not at all unIikely; we have seen it in detailed simulations,
it compares favorably with the measured hit rates of the S-1 Mark I (95-98% using a 4K cache), and it
agrees well with ihe predictions of [Sj.

With the use of shared memory and special interprocesEor communication instructions, relatively tight
coupling between member processors of medium-sized multiprocessors can readily be achieved. When
using an S-1 multiprocessor system in a %ask-pipelined” manner, results from previous stages may be

●* passed directly to the next stage without first being evicted from main memory, without trmsroission over
bandwidth-limited bu!ses, and without delaying the execution of the current stage of processing on the next
batch of data. We have also been working on the m ore complicated effort of using = S- I multiprocessor
for efficient execution of a single task; preliminary studies indicate that applications considered tightly-**
coupled may nonetheless be able to achieve a speed-up factor of m ore than ten on a sixteen-processor
system ([QJ).

Summary

The S-1 Mtik IIA uniprocessor [and future implementations of the S-1 architecture) will provide

. . .— -.— .-— ___-.——. ——. . .—
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a level of compute power, programmability and cost-effectiveness which will allow the performance of
signal processing tasks not feasible with current systems. The combination of general-purpose and signal
processing mchitectures in one machine is expected to be particularly valuable in reducing signal processing
system costs and creation latencies. For those tasks which are too demanding even for such a powerful
processor, the S-1 Mark IT.A multiprocessor system will improve the total available compute power by more
than sm order-of-magnitude, while rettining the unusually high programmability and cost-effectiveness of
the uniprocessor.
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